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ABSTRACT

It is shown that the freeze distribution is a mixture of the distribution of freeze-date and the simple dichoto-

mous distribution of freeze and freezeless years.

This is applied both nonparametrically and assuming a normal

distribution of freeze date to three stations at three different thresholds to obtain the probabilities of freeze

before or after any date.

The distribution of the freeze-free period is developed and application made to one of
the stations to obtain probabilities of the freeze-free period being less than a given time interval.

The expressions

for the mean freeze-date and freeze-free period are also developed and estimates made for the stations treated.

1. INTRODUCTION

The estimation of freeze probabilities from complete
freeze-date series has been treated by Thom and Shaw
[1]. When the freeze-date series for an observation sta-
tion is sncomplete in the sense that some vears experienced
no freeze, there is, of course, a probability of freezeless
years. This is common in more southerly latitudes, espe-
cially for freeze thresholds below 32° F. With the addi-
tion of the no-freeze probability component, a quite dif-
ferent problem in the estimation of freeze probability
arises. This has been discussed by Spillman et al. [2].
They gave rules for finding the mean recurrence interval
for the incomplete series; but since they did not recognize
the more general statistical aspects of the problem, their
rules are not completely convertible to probability state-
ments.

2. THE FREEZE DISTRIBUTION FUNCTION

The model for determining freeze probability may be
thought of as a mixture of two distributions: one a dis-
crete distribution of no-freeze and freeze, the other an
essentially continuous distribution of freeze-date for years
when freeze occurred. In this discussion, the period over
which spring freeze-date is assumed to range is January
1 to June 30, and that for fall freeze is from July 1 to
December 31. These are arbitrary, and other dates may
be assumed if it suits a particular purpose better, as we
shall see later. The model is seen to be equivalent to con-
centrating a probability of no-freeze at an arbitrary point
before the beginning of the season for spring freeze and
after the season for fall freeze.

We define the spring freeze-date series as in [1] to be
the series of annual last dates in spring on which a min-
imum temperature less than the threshold temperature

*This paper is based on work done while the writer was Visiting Pro-
fessor of Statistics, Biometries Unit, Cornell University [3].

(32°, 28°, 24°, 20°, 16°) has occurred. The fall freeze-
date series is defined by substituting the words fall for
spring and first date for last date.

On the basis of the results given in [1], we shall assume
that the climatological series comprising freeze-dates
mixed with no-freeze occurrences are random variables.
It follows then that the distribution functions of freeze
may be found, and that these will completely define the
freeze series populations.

The distribution function is defined as usual by

Fay= [ fw du )

where f(u) is the probability density function (pdf) or
frequency distribution and F(—o0)=0 and F(o0)=1.
Here/Z” (#) is the probability that v is less than x; and
when u is continuous this is identical with the probability
of a value less than or equal to #. Clearly in the spring
we shall be most interested in the probability of a freeze
occurring after @, and hence, we shall be interested in the
form 1—7(2) which gives that probability. In fall we
shall be interested in the probability of a freeze before x
which is given by 7 () itself.

The mixed distribution of freeze-date and no-freeze for
spring may now be derived as follows: Let ¢, be the prob-
ability of no-freeze occurring in spring according to the
model assumed above. 1—¢,=p, is then the probability
of a freeze after the beginning of the freeze season. Ac-
cording to the definition of mixed distributions [4], the
distribution function for spring freeze will be

G (@) =gstps Fs(2) (2)

where F5(2) is the distribution function of spring-freeze
date when freeze occurred. We employ large S and A to
indicate the continuous portion of x, and small ¢ and &
to indicate the discrete portion. It is seen that @ («) is
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a distribution funection, for if & takes a small value & by
definition #(b)~0, meaning that no freeze-date will
occur before b where ¢(b) =¢,. This is the probability
that no-freeze will occur. If  is not a member of either
s or S, then G (z)=0, for it is impossible that either one
of the events freeze or no-freeze should occur. On the
other hand, if @ is a large value, ¢, then by definition
F(c)~1, and G(x)=¢st+ps=1 which is the probability
that either no-freeze or a freeze-date have occurred before
¢. Thus (2) is a distribution function. It will be clear
now that the probability of a freeze after date = will
depend not only on 1—F#(z), the probability of freeze-
date when freeze has occurred, but also on the probability
that a freeze will occur at all on any date. This, of
course, is 1—g, or ps.

As we have seen, G (2) of equation (2) gives the prob-
ability of freeze or no-freeze before @, whereas our main
interest is in the probability of freezes after ». This is
clearly one minus the probability obtained from (2). Iet

H(z)=1—G(),
then
H(x)=1—q,—pF(x);

and since p,+q.=1,

H(x)=p,[1— Fs(x)]. (3)
If we write
I(z)=1—Fs(x) (4)

equation (3) becomes
H(z)=p, (). (5)

This gives the probability of a freeze occurring after
date @ in spring.

For fall freeze we have a similar mixed distribution
except that the probability of no-freeze is now concen-
trated after the fall freeze season and again does not
enter into the probability before x. Hence the date
distribution is

T (2) = poF (=) (6)
Here p, is the probability of a fall freeze and 77, (z) is
the distribution function on date. Since the distribution
function gives the probability of freeze before date x,
equation (6) gives the required probability directly. If
the probability after = is needed, this may be obtained
from 1—J («). This then includes ¢,, the probability of
no-freeze in fall (autumn).

It should be noted that equations (5) and (6) hold
generally, for in the situation where freeze occurs every
year,as discussed in [1], ¢==0 and p~=1.

3. ESTIMATION OF FREEZE PROBABILITIES

The main objective in developing the freeze distribu-
tion is to provide the means of obtaining probabilities.
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Thus, proper estimation of the terms in (5) and (6) will
provide estimates of the required probabilities. There
are two ways in which we can estimate these terms: Hav-
ing estimated the p’s, we may estimate the 7 and 7,4 func-
tions directly from the data, or we may first estimate the
parameters of the /7 and /4 functions. Before we can
perform these estimations, however, we must define our
climatological variable, freeze-date, more closely.

Clearly calendar date would be unsatisfactory as a
variable. However, we can easily convert calendar date
to day number beginning from some suitable base date.
This will facilitate computations, the statistics from
which may be readily converted back to calendar date.
Since freeze dates vary over the periods July 1 to De-
cember 31 and January 1 to June 30, January 1 has been
chosen as the base date. In leap years the 366-day year
was employed.

Inasmuch as the base date will affect the mean of an in-
complete freeze series, it might appear to be somewhat
better to place the base date at a point halfway between
the means of the fall and spring dates when freeze actually
occurred. However, this would result in little refinement
and would cause great inconvenience, for a computation of
the halfway date would be required for each station.
An examination of a number of stations showed that the
halfway date usually occurs a few days after January 1.
In view of the larger dispersion of the spring dates, the
ideal base date, on probability considerations, should be
displaced backward in time somewhat from the halfway
date. This, together with the fact that the choice of base
date does not greatly affect the probabilities, seemed to
make the January 1 base the most satisfactory. All data
with which we shall be concerned have therefore been
coded to January 1. Tables 2, 3, and 4 show the freeze
dates coded in this manner for Anniston, Birmingham,
and Auburn, Ala. The data are arranged in order of
increasing date and labeled with order number %. The
three southern stations were chosen to emphasize the in-
completeness aspect of the freeze series which is the central
problem of the present analysis.

Our first estimates of Z and J will be empirical or non-
parametric. These involve first the estimation of 7 and #4.
While ordinarily with quite long series these would be
estimated by &/m where k& is the order number and m is
the number of actual freeze dates, it has been found that
for a continuous distribution the following equation gives
estimates which are more unbiased at the smaller and
Iarger probabilities:

k
Jk SSSSR N
I m—-1 (7
For spring this becomes
k
S PO L
Ir=1 m—+1 ®)
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TaBLe 1—Stalistics for various freeze thresholds for Anniston,
Auburn, and Birmingham, Ala.

Freeze n z I #and? 8 D 13 N
(code) | (date) | (date)
ANNISTON
Spring
32 29 29 89.4 3/30 3/30 14.0 1. 000 0. 820 —0.195
28 29 29 70.1 3/11 3/11 16.9 1. 000 . 768 005
24 29 28 55.0 2/24 2/22 18.0 . 966 L7719 —. 846
20 29 26 47.0 2/16 2/11 19.2 . 897 . 816 —. 375
16 29 16 39. 2/9 1/22 18.8 . 552 . 736 .431
Fall
32 28 28 310.3 11/6 11/6 12.1 1. 000 0. 795 0.310
28 28 28 323.8 11/20 11/20 12.2 1.000 L7700 —. 985
24 28 22 333.4 11/29 12/6 13.9 . 786 .716 . 888
20 28 14 338.1 12/4 12/18 10.7 . 500 . 829 . 279
16 28 9 345.1 12/11 12/25 11.7 .321 LT28 —. 710
AUBURN
Spring
— _
32 30 30 80.3 3/21 3/21 16.6 1. 000 0.805 —0,219
28 30 30 59.5 31 3/1 18.1 1. 000 .793 —. 478
24 29 27 4.9 2/14 2/11 21. 4 .931 . 813 —.381
20 29 23 42.6 2/12 2/3 19.6 . 793 . 864 —.173
16 29 12 32.0 { 2/1 1/13 15.1 .414 789 | L 244
i
Fall
32 30 29 | 317.9 11/14 11/16 9.6 0. 967 0. 842 —0.203
28 30 27 333.1 11/29 12)2 11. 4 . 900 .725 L910
28 30 19 338.6 12/5 12/14 12.9 . 633 . 841 . 468
20 30 10 340.1 12/6 12/23 11.3 .333 . 807 —. 194
16 30 6 347.0 12/13 12/27 1.3 . 200 . 738 —. 266
BIRMINGIIAM
Spring
32 30 30 77.6 3/19 3/19 16.3 1. 000 . 764 —0. 493
28 30 30 62.7 3/4 3/4 17.3 1. 000 L7170 .097
24 30 28 50. 5 2/20 2/16 15.7 .933 .818 —.245
20 30 19 44.4 2/13 1/28 17.0 . 633 .7 —. 219
16 30 14 34.4 2/3 1/16 19.7 . 467 . 849 170
Fall
32 30 29 316.7 11/13 11/14 12.2 0.967 0. 797 —0.019
28 30 28 334.7 12/1 12/3 14.3 .933 . 825 116
24 30 21 339.8 12/6 12/13 12.5 . 700 . 854 . 362
20 30 12| 342.1 12/8 12/22 11.0 . 400 L790 —. 531
16 30 8 346. 5 12/13 12/26 11.5 . 267 . 819 —~. 135

The star indicates a nonparametric or distribution-free
estimate of 2 parameter from a sample.

To complete the estimation of Z and J, we must esti-
mate p, and p,. Since the freeze, no-freeze series forms
a discrete distribution the estimates are found from

A m
P*%’ (9)

where { is the parametric estimate of p, m is the number of
years with freeze, and n is the number of years with freeze
or no-freeze. The number of years with no-freeze is, of
course, 7 —m.

The estimates ps and p, are shown in the » column of
table 1. These were obtained by applying equation (9)
to the m’s and n’s listed there. The statistics for all thresh-
olds are given in table 1, although only Anniston 16°,
Auburn 24°, and Birmingham 20° are discussed in full.
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TABLE 2.——Estimated probabilities of 16° freeze for Anniston after
given dates in spring and before given dates in fall

Spring

I H* ir
0.959 0.519 0.529
.37 L487 L5817
896 .455 -495
782 -4922 .432
.732 390 L 404
L681 357 L376
472 325 ~261
-472 292 L2961
-452 260 -250
-409 297 . 296
2201 | 195 L161
29| 162 L1161
-166 130 -092
154 097 L85
-107, 065 .050
3/10 ! L 054 033 2030

- | | ,
Max |d]|=0.116
Fall

Date v F* l s { J* J
11/16 | 321 0. 100 [ 0.018 I 0.082 | 0.006
19/ 3 \ 337 200 .251 . 064 -081
12/ 7 341 -300 1367 | 096 118
12/ 9 343 J - 400 1433 | 198 1139
1212 346 | - 500 - 532 161 a7
12/16 350 ( - 600 .663 / 193 .23
12/17 351 700 691 | 225 292
12/3 \ 357 ~R00 .844 257 271
12/26 360 -900 - 896 989 288

Max m;—n 082

The 7* and F* are estimated by applying equations (7)
and (8) to the &’s and m’s of tables 2, 3, and 4, giving the I*
and F* columns of spring and fall freeze of those tables.
From equations (5) and (6) it is seen that it is necessary
to multiply the 7* and F7* by p, and p., respectively, to
obtain /* and J*, the nonparametric estimates of the
mixed distribution. From table 1 we find for Anniston
16°, p,=0.552 and p,=0.321. Multiplying these, respec-
tively, by the values of /* and F* from table 2 gives the
H* and J* columns of the table. A similar calculation
applies to tables 3 and 4. It is seen then that * gives the
probability that a freeze occurs after date « in spring
and /* the probability that a freeze occurs before date »
in the fall. From table 2 we see that the probability of a

° freeze at Anniston after February 11 is 0.260, after
Mareh 10 it is only 0.033, or about 1 year in 30. The
probability of a 24° freeze occurring before November 19
at Auburn is 0.063 from table 3, and of a 20° freeze after
March 10 at Birmingham is also 0.063 from table 4. We
do not recommend the nonparametric estimates for use in
obtaining probabilities since we have a theoretical distribu-
tion as we shall see below. However, the empirical proba-
bilities are necessary for judging the fit of the theoretical
distribution so they are plotted in distribution function
form as broken lines in figures 1, 2, and 3. If one desires
to use the empirical or nonparametric probabilities, the
recommended form of graph would be that shown in these
figures.
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TaBLE 3.—Estimated probabilities of 24° freeze at Auburn after given
dates in spring or before given da'es in fall
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TaBLE 4.—Estimated probabilities of 20° freeze at Birmingham after
given dates in spring or before given dates in fall

Spring Spring
k Date z I* I Ir* H k Date z I* I H* H
1 1| 0.964| 098] 0.897 0.912 Y15 15| 090 o090| o601 0.614
1/ 2 2 . 929 . 977 . 865 .910 1/16 16 . 900 . 952 . 570 . 603
1/15 15 893 918 831 855 1/24 24 . 850 . 875 . 538 554
17 17 857 -903 708 841 128 2 800 -821 1506 520
1/24 24 821 1834 764 776 1730 30 750 J791 475 501
1/28 28 786 . 785 732 731 1/31 31 700 L7738 .443 489
91 32 750 “726 608 676 210 Qa 650 571 P 361
2/ 1 32 714 . 726 665 676 2/11 42 600 . 548 . 380 347
2/ 3 34 679 . 695 632 647 2/13 44 550 . 504 .348 319
2/ 8 39 643 . 606 599 564 2/15 46 500 . 456 .317 289
2/ 9 40 607 . 591 565 550 2/19 50 450 . 367 . 285 232
2/11 42 571 . 552 532 514 2/19 50 400 . 367 . 253 232
2/12 43 536 . 536 499 499 2/19 50 350 . 367 . 222 232
2/13 44 500 . 516 466 480 2/19 &0 300 . 367 . 190 232
2/18 50 464 . 405 432 377 2128 59 250 . 198 158 125
2/19 50 429 . 405 399 377 3/3 62 200 . 154 127 097
2/23 54 393 L334 366 311 3/4 63 150 . 140 095 089
2/28 59 357 . 255 332 237 3/10 70 100 .076 063 048
2/28 59 321 . 255 299 237 3/14 73 050 . 049 032 031
3/ 1 60 286 . 239 266 223
3; 3 62 250 L212 233 IQZ
3/ 4 63 214 .198 199 18 —
38 67 179 149 167 139 Max [d|=0.083
3/11 70 143 119 133 i1
3/13 73 107 1102 100 -095 Tall
3/14 73 .071 . 093 . 066 . 087
3120 79 . 036 . 035 .034 . 051 R N
k Date P P B J* F
Max|d|=0.102
11/15 30| 0.077| 0021 0.031 0.008
11/24 328 . 154 . 109 . 062 . 044
Fall 11/29 333 . 231 215 .092 . 086
12/ 2 337 .308 . 302 .123 .121
- 12/ 6 340 1385 J433 1154 173
Date T F* I J* J 12/ 8 342 . 462 . 504 . 185 . 202
12/11 345 . 538 . 606 . 215 . 242
12/15 349 .615 . 736 . 246 . 204
11/15 320 0, 050 0.077 0.032 0. 049 12/16 350 . 692 . 764 L2717 . 306
11/19 323 . 100 L1117 063 .074 12/16 350 . 769 . 764 . 308 . 306
11/20 324 . 150 133 095 084 12/21 355 . 846 . 877 .338 .351
11/24 328 . 200 212 127 134 12/22 356 . 923 . 894 . 369 .358
11/25 329 . 250 233 158 147
11/26 331 . 300 258 190 163
11/27 331 . 350 284 222 180 Max |d]=0.121
11/28 332 . 400 312 253 197
11/29 333 . 450 337 285 213
11/30 334 . 500 367 317 232
12/ 2 337 . 550 429 348 272
12/ 9 343 . 600 641 380 406
125 9 344 . 650 641 411 406
12/11 345 . 700 695 443 440 3 3 3 - 3 _
12 iprd 100 693 4 40 continuous component of the mixed distribution for nor
12/16 350 . 800 816 506 517 3 M 3 3 3
b i b o 508 27 mality which is fitted to the date of freeze in the series of
1 ! 954 57 .
HE F# - o o %% actual freeze occurrences.
Probability tables used in [1] due to Geary [6] are
Max|d|==0.133

Reed [5] and later Thom and Shaw [1] found that the
normal distribution provided very good fits to freeze-
date series under a wide range of conditions for the 32°
and other thresholds for complete series; i.e., for p=1.
The series, of course, tend to be more incomplete the far-
ther south we go. This is also accompanied by a shift in
the center of the distribution toward the colder season;
Le., toward winter from both fall and spring. This shift
of the distribution center naturally causes some concern
since the tails of the distributions on the winter end could
begin to show the effect of boundedness, and hence depar-
ture from normality due to the decrease in time interval
over which late fall and early spring freeze can range.
This was also the reason for testing our theory on stations
in a southern region where conditions are most stringent.
To verify a part of our theory it is necessary to test the

508099—59——4

again employed to test for normality. In these, @, the
standardized mean absolute deviation from the mean, and
\/b,, the standardized central third moment, are measures
of kurtosis and skewness. These statistics are listed in
table 1. Using the tables of [6] it was found that none
of the &’s are significant at the 0.10 probability level, and
only the \/b, (in italics in table 1) for 28° freeze in fall
at Anniston is significant at the 0.02 level. The four
largest values of \/b, are individually significant at the
0.10 level but average near zero. Two of these are nega-
tive and two are positive; however, fall and spring each
have a negative and positive value.. This is in disagree-
ment with what we would expect on the basis of the pos-
sible boundedness mentioned above which would cause
negative skewness in fall and positive skewness in spring.
We feel, therefore, that it is reasonable to assume that
these larger values were a result of sampling and that,
therefore, the normal distribution satisfactorily fits the
continuous component of the mixed distribution of freeze
occurrence and date. ' :



1.0 T T T T T T T T
ANNISTON
16° FREEZE
8 T
— ——Non—paromeltric
> Parametric
-~ 6 1
=
o
<
]
o
o 4 m
o
2 7
I} 1 i 1
1" 121 2/10 3/2 3/22 /10 /30 12720

DATE

Ficure 1.—Probabilities of 16° freeze at Anniston, Ala., occurring
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Freure 2.—Probabilities of 20° freeze at Birmingham, Ala., occur-
ring after any given date in spring or before any given date in fall.
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Freure 3.—Probabilities of 24° freeze at Auburn, Ala., occurring
after any given date in spring or before any given date in fall.

I(x) and F(z) were fitted as normal distributions to
the spring and fall freeze-date series in the usual manner
by estimating the means and standard deviations. 7(x)
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gives the probability of freeze occurring after date = in
spring and # (x) the probability of an occurrence before
date « in fall, both on the condition that freeze has actually
occurred. These probabilities are parametric estimates
and are indicated by / and F in tables 2, 3, and 4. The
normal estimates and the nonparametric estimates of the
probabilities may be compared by contrasting the careted
and the starred distributions.

Although there is little question about the adequacy of
the normal distribution in fitting freeze-date, it is of in-
terest to test the fit in another manner. For this purpose
we use the easily applied Kolmogorov-Smirnov test for
which Massey has provided convenient tables. Massey
[7] has also examined the power of the test and has found
it superior to the x* test in the cases analyzed. The test
is carried out by examining the significance of

max | d | =max | k/m—1(z) |. (10)
This is the maximum absolute difference between %/m and
the normal distribution function. The maxima of ||
are shown at the foot of each distribution table. KEach
value may, of course, be tested separately; however, we
may test them all at once by considering the maximum of
the max |d | for the longest record employed in fitting
the normal distributions. This will be a more stringent
test than if we had used the actual length of record, length
m. Max (max |d|) we see to be 0.133 and the longest
record is 19 years. For these arguments Massey’s table
gives

P(max | d| >0.133) >0.20

Since 0.20 is a rather large probability, the fit is good; in
fact, all the fits are as good or better than this. This
strengthens our conclusion of normality reached above.
The goodness of fit also extends to the mixed distributions
since there is little question of the fit of the p’s.

The mixed distributions of spring and fall freeze are
obtained from equations (5) and (6). These are the s
and J’s of tables 2, 3, and 4 and are obtained from the /’s
and F’s by multiplying respectively, by p, and p.. H*
and J* are the nonparametric mixed distributions, and
H and J are the parametric mixed distributions. These
are plotted in figures 1, 2, and 3. Here one may observe
the rather good fits of the smooth mixed theoretical dis-
tribution to the broken line empirical distributions.
Probabilities of freeze before or after any date may be
read from the smooth curves.

4. MEAN FREEZE DATE

Although the mean freeze date of the incomplete freeze
series is more difficult to interpret, it is perhaps of some
formal importance to consider it. Ordinarily the mean
value of even a mixed distribution is obtained readily by
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finding the expected value of the distribution. Here, how-
ever, the expected value depends on what value we assign
to the dates on which we assume the probabilities ¢, and
¢a to be concentrated. We made some provision for this
difficulty when we considered the freeze distributions
above, but this was not as important there because the
probabilities were not affected by the base date. If we
make the reasonable assumption that the maximum grow-
ing season is 365 days, then it follows that when no-freeze
occurs in spring, but one occurs at date 2z in fall, the grow-
ing season is # days long. Xf a freeze occurs at « in spring,
but none occurs in fall, then the growing season is (365
—a) days long. We have previously chosen our day num-
ber code to give a reasonable interpretation to the mean
dates; hence if we add our assumptions about growing
season length, ¢, will be assumed concentrated at code 0
and ¢, at code (365+0). 0 and (365+0) are actually the
same hypothetical day chosen so as to fit the conditions
imposed by our model of the freeze-free season. We may
now readily define the mean or expected values of the
spring and fall freeze date.

For convenience we designate xg and «4 as the continu-
ous parts of the spring and fall freeze variables on the
total interval (1,365) and «, and @ as the discrete parts.
#, only takes the value (365+0) and @, only the value 0.
We define the pdf’s on data in spring and fall to be f(xs)
and ¢g(w.), respectively. These are the derivatives of
distribution functions expressed generally by equation
(1). We need also to define the mixed variable date w
for spring and » for fall, so as to include both the discrete
and continuous parts. w and v then have the total range
(0, 365+0). With these additions, we may now express
the mixed pdf of spring freeze by

h(w) =qs+tps [ (@s) (11)
and for fall freeze by
1(v) =pag(@4) + ga. (12)

The expected value or mean is defined as the sum and
integral of the products of the variates by their probabil-
ities. Taking into account the fact that ¢, and ¢, are
discrete components of probability concentrated at 0 and
(365+0), we find the mean value for spring to be

E(u)=0% ¢, +p, f zsf (xs)das (13)

and for fall

E(v):365371—}—29,,‘]:1 Zag(xa)de,. (14)
Here § is the domain of spring freeze pdf and 4 is the
domain of fall freeze pdf. Although in reality the
domain (S+4) is (1, 365) as mentioned previously, we
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find it convenient to assume S and A4 to be of infinite
extent. This is plausible because the probability densities
become very small near =1, 865, and 364/2. With this
assumption, together with the previous one that f and ¢
are normal pdf’s, it is clear that the integrals in (13) and
(14) are mean values conditional on the occurrence of
freeze. These may be expressed by £ (xg) and E(xa)
meaning the expected values in domains § and 4. Equa-
tions (13) and (14) then reduce to

B (u) =ps £(@5) (15)

and

E(v)=365 qut poli (2.). (16)
Inasmuch as Z (wg) and Z'(24) are the means of normal
distributions, they will be best estimated by the arith-
metic means of spring and fall freeze dates 2y and z,.
Substituting these estimates together with the estimates
of the p’s and ¢’s, we find the estimated mixed means for

spring
(17)

EZPSES,
and for fall

=865 qu+ paia. (18)
These are listed in table 1 for the stations studied and
have been tabulated for a large number of Weather
Bureau stations.

5. FREEZE-FREE SEASON DISTRIBUTION

It will be clear from our definition of the freeze-date
variable for spring and fall that we may express the
freeze-free season by the variable y=v—wu. We shall
assume, based on previous work for complete series [1],
that spring and fall freeze dates are independently dis-
tributed. This seems all the more justified for incom-
plete freeze series since the spring and fall distributions
are located farther apart in time than those for complete
series. In order to find the distribution of freeze-free
season, we must obtain the distribution of y. This may
be most conveniently done by moment-generating func-
tions or characteristic functions (cf). The former are
ordinarily Laplace transforms and the latter Fourier
transforms. It makes little difference which we use here
since our development need only be a synthesis of known
results. We prefer the cf because it has somewhat more
general application.

The cf of a pdf is defined as the expected value of the
Fourier kernel. (See [8], ch. 10.)

D= = [ o f@)d. (19)
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Here t is an arbitrary variable and f(z) is the pdf.
The analytical power of the cf arises from the fact that
¢(t) is a Fourier transform, and therefore the inverse
‘may immediately be expressed as

which gives the required pdf. The cf’s are obtained
from the pdf’s of equation (11) and (12) (see [8], pp.
57-58) by multiplying by the Fourier kernel and taking

o(t)e= it (20)

expected values. This gives

¢ (£) =qs T ps 0s(t) (21)
and

w(t):ga—[_pa (PA(t) (22)

For convenience in convolution we may take y=—wv
+(—w) in which case the variable —w has the cf
es(—1) ([8], p- 185), and we may rewrite (21) as

£(t)=qstps ps(—2).
By the principle of convolution of distributions the cf of

the sum y=w»+ (—u) will be the product of (22) and
(23) 51ie.,

Q(8) =¢sgat spapa(t) T gapsps(—2)

+pspapalt)es(—1). (24)
Assuming normal distributions for spring and fall freeze-
date, we consider the last term first. This is the term
involving freeze occurrence in both spring and fall. It is
well known that the c¢f of a normal distribution with
mean p and standard deviation o is

w(t) =exp [_ 1/2252 042+?:ZfILA]
using our variable for fall freeze.
have the required cf

£(t)=exp [— 148 05® —itpg] (26)

Multiplying (25) by (26), we find the c¢f of the mixture
component of freeze-date to be

m§=exp ["‘1/2t2(0'A2+0'32) +it(MA—IJ¢S)] (27)
Since this is of the form (25) with mean ps—pg and
variance (o4*+os?), it is a normal distribution with these
parameters. We shall express the pdf of this cf as w(z)
where 2= (w4 —25).

As to the other terms on the right of equation (24),
the first term is the product of the probabilities that there
is no freeze in either spring or fall and is consequently
the probability that the freeze-free season is 365 days. The
pdf’s of the second and third terms may be interpreted
as follows: The second term is the mixture component
with no-freeze in spring but one in fall; hence the variable
2= (w4—0)=w4. Since the cf is for the pdf g, this remains

(23)

(25)

Hence for spring we
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g (24). The third term of (24) is the mixture component
with freeze in spring but none in fall. For this the freeze-
free season variable is 2=365—2y and the pdf becomes
7(365—axg) which has the cf ¢s(—¢) with a location shift
to account for our chosen freeze-date scale.

With these interpretations made, we may now write the
pdf of freeze-free period as

7(y) = qsqa~t gspag (®4) T qupsf (365 —ag) + pspaw (2). (28)

If we integrate equation (28) term by term, remembering
that the first term is a constant, we find the distribution
function of freeze-free period to be

Q(y) =qspal a(@4) + qupsl s (365 —wg) +pspa W (2) + ¢sge
(29)

As we have gseen previously, the distribution function
gives the probability of an occurrence of freeze before date
@, hence @) (y) gives the probability of a growing season
less than . This may be obtained from equation (29) by
substituting the estimates for the p’s, ¢’s, means (), and
standard deviations (s) from table 1.

As an example, we obtain ¢ (¥) for the 16°—16° freeze-
free period at Anniston. This cannot be expressed as a
single function; it must be compiled by adding the com-
ponent probabilities of equation (29). From table 1 we
find the mean of the 16° fall-freeze variate to be z,4=345.1
and the standard deviation s,=11.7. According to our
definition, the mean for the spring freeze variate is
365—2s. From table 1, 16° spring freeze, we find
Zs=39.8; hence, 365 —z3=2325.2. Since the standard de-
viation is not affected by either the algebraic sign of a
or its subtraction from 365, sg is also found from table 1
and is 18.8. From equation (27) we see that the sample
mean of the last component is 2=, —#s=3805.3, and the
standard deviation is

VsdFsst=/(IL7)2F (18.8)=22.1.

From table 1 we also find p,=0.552 and p,==0.321. The
¢’s are one minus the p’s; hence ¢;=0.448 and ¢,=0.679.
These readily yield the coefficients in (29): gsp,=0.144,
Qaps=0.375, psp=0.177. The probability of a 16°-16°
freeze-free season of 365 days is ¢;¢.=0.304. Note that the
coefficients of the probability function (28) add to unity
as they should.

The probabilities for each component of the mixture for
a convenient set of freeze-free season durations were com-
puted using the above data and are listed in table 5. The
theoretical distribution @ is listed in the eighth column
and is the sum along rows of the three components. The
empirical distribution @% computed from the original
freeze-free season series by equations (7) and (29) is
shown in the last column for comparison purposes.

The theoretical and empirical freeze-free distributions
are shown in figure 4, the former by the smooth curve
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TaBLE 5.—Distribuiions (Q and Q*) of freeze-free season durations for 16° threshold for Anniston, Ala., and probabilities for each component
of the mizture

A A A A A A AA Al Aa A A
¥ w Fy Fs DupeW | qupaFa | (apsFs Q ] > o*

250 (. 006 (. 001 0. 001 287 0. 048 0.034
255 .01 L002 2 288 . 095 . 068
260 . 020 . 004 004 290 .143 102
265 . 034 0.001 . 006 . 006 205 . 190 . 136
270 . 055 . 002 .010 0. 001 .011 301 . 238 L170
275 . 085 004 L015 L002 .017 315 . 286 . 204
280 S127 008 .022 . 003 .025 315 . 333 .238
285 179 016 . 032 . 006 . 038 321 . 381 .272
290 .245 031 . 043 .012 . 055 323 . 429 . 306
295 .319 . 054 . 056 . 020 . 076 324 . 476 . 340
300 . 405 . 090 072 . 034 . 106 324 . 524 .374
305 . 496 142 L 088 . 053 . 141 327 . 571 . 408
310 . 583 0. 001 . 209 .103 .078 . 181 337 . 619 . 442
315 . 670 005 . 295 S119 0. 001 L1111 .231 337 . 867 . 476
320 . 749 L0168 . 390 . 133 L 002 . 146 . 281 340 . 714 . 510
325 .813 . 043 496 . 144 . 006 . 186 . 336 341 . 762 . 544
330 . 869 . 099 . 603 . 154 .014 . 226 . 394 348 . 810 579
335 . 910 195 . 698 . 161 . 028 . 262 . 451 351 . 857 . 612
340 . 942 . 330 785 L167 . 048 | . 294 . 509 354 . 905 . €46
345 . 964 . 496 . 853 171 071 \ L3820 . 562 357 952 . 680
350 . 978 . 663 . 907 .173 . 095 . 340 . 608

356 . 988 . 802 . 944 175 115 . 354 . 644

360 . 993 . 898 . 968 . 176 L129 . 363 . 668

365 . 997 . 955 . 983 L176 .138 ' . 369 . 683

and the latter by the broken line. The 365-day component
of probability is the vertical line at right end of the
theoretical curve. The maximum absolute difference be-
tween the empirical and theoretical curves, adjusted to
unity to make the continuous part a distribution function,
is 0.089. For sample size 20, the number years with
freeze, Massey’s [7] table gives a much larger value 0.231
at the 0.20 probability limit. The fit of the theoretical
distribution to the actual data is therefore very good.
Probabilities that the 16°-16° freeze-free season is less
than any number of days read on the abscissa may be
read from the ordinate of the figure.

1.0 T T T T T T
ANNISTON
16°—16° FREEZE-FREE PERIOD
8 r —
s 1
2
0
<
@m
o]
& 4+ -
a — — — Non —-parametric
Paramerric
2+ -
¢] k L 1
240 260 280 300 320 340 360 380

16°—16° FREEZE—-FREE PERIOD, DAYS

Fieure 4.—Freeze-free distributions (16° threshold) for Anniston,
Ala,

6. MEAN FREEZE-FREE SEASON

The mean or expected value of the freeze-free season
which is at least of some formal interest can be readily
found by the usual methods from equation (28). Multi-
plying each term by its variate and integrating, recalling
that the first term is associated only with 365, and sub-
stituting rough values, we find

T=365 ¢sQat qePaTat qups (365 —Fs) +pspad.  (30)

It was pointed out to me by Dan Harton that y can
obviously be obtained much more easily from the difference
of equations (15) and (16). This gives

y= 365 ¢ut Pa T4~ Ps Ts. (31)

By a considerable amount of algebraic manipulation,
equation (30) may be reduced to equation (31). This is
of interest since it shows that convolution has produced
a distribution (28) consistent with the basic assumptions
as, of course, it must if it is correctly defined.

Using either formula together with the values found
above, we find ¥, the mean 16°-16° freeze-free season at
Anniston, to be 336.6 days. The means of spring and fall
freeze and freeze-free period are available from Weather
Bureau State climatologists for a large number of stations
in the United States.
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